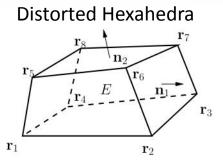
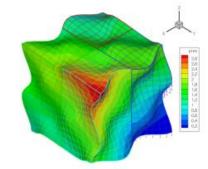
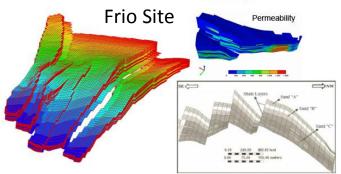
Accurate Methods for Fluid Flow: Multipoint Flux

Scientific Achievement


Development of accurate, locally conservative, multiscale discretizations for multiphase flow on complex geometries.

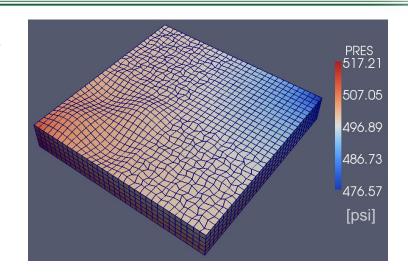
Significance and Impact

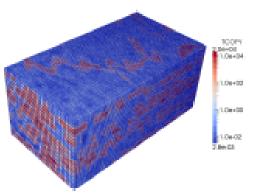

➤ Can handle non-matching grids, full tensors, simplicial elements and distorted hexahedra; easy to implement.


Research Details

- Algorithm based on mixed finite elements; rigorous error estimates derived.
- Results extended to multiphase flow with gravity and capillary pressure curves.
- ➤ Modeled Frio CO₂ injection site.
- Can model nonplanar faults and fracture interfaces.

Multiscale Discretizations




Solver Performance: Multipoint Flux Method

Coupled Symmetric and Non-Symmetric MFMFE Methods

- Symmetric method: for nearly cubic elements
- Non-symmetric method: for highly distorted hexahedral elements

SPE 10 permeability on highly perturbed hexahedral mesh with 1.1M elements.

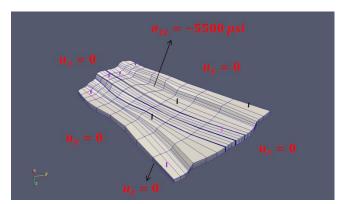
Solver Performances for SPE 10 Benchmark

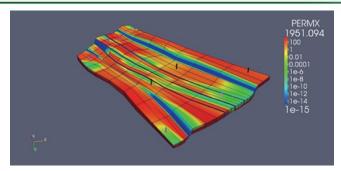
Symmetric multipoint flux

Solver	Iterations	
HYPRE	27	
SAMG	34	
FASP	14	
Trilinos ML	21-28	

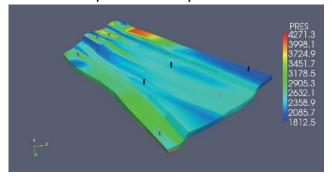
Non-symmetric multipoint flux

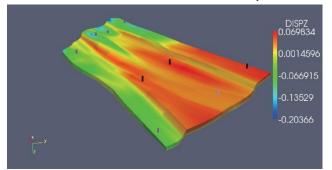
Solver	Iterations		
HYPRE	42		
SAMG	61		
FASP	25		
Trilinos ML	23-29		





Coupled Poroelasticity on a General Hexahedral Grid

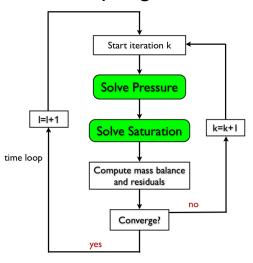

D. D. L. CETTED	OTTA NUMBER 1	X 7.4 X X X 7.7 TO
PARAMETER	QUANTITY	VALUE
x	x coordinate	∈ (-10.4, 8561.6) ft
у	y coordinate	∈ (68.8, 8822.9) ft
z	z coordinate	∈ (3796.9, 5436.2) ft
T	total simulation time	7.0 day
ΔT	time step size	0.1 day
P_0	initial pressure	hydrostatic
$ ho_0$	reference fluid density	$56 lb_m/ft^3$
η	fluid viscosity	1 cp
c_f	fluid compressibility	$4.0 \times 10^{-7} \ psi^{-1}$
φ	initial porosity	0.2
k_{xx}, k_{yy}	horizontal permeability	$\in (1.0 \times 10^{-15}, 1592) \text{ md}$
k_{zz}	vertical permeability	$0.1 k_{\chi\chi}$
N_{inj}	number of injection wells	6
BHP_{inj}	bottom hole pressure of injection wells	€ (3300, 4400) psi
N_{prod}	number of production wells	3
BHP_{prod}	bottom hole pressure of production wells	2000 psi
σ_{zz}	vertical stress on reservoir top surface	-5500 psi
E	Young's modulus	$1.0 \times 10^6 \text{ psi}$
ν	Poisson's ratio	0.3
ρ_s	rock density	$165 lb_m/ft^3$

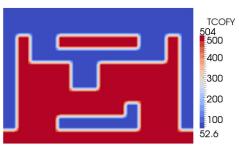

Mechanics Boundary Condition

X-permeability Profile

Fluid Pressure at 7.0 Days

Vertical Displacement at 7.0 Days

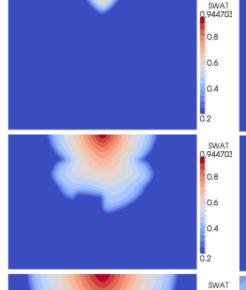


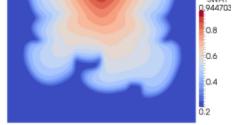


Modeling Capillarity with the Multipoint Flux Method

Iterative coupling IMPES Scheme

Brooks-Corey Capillary Pressure


$$k_{rw} = 0.7s_e^2$$
 $k_{rn} = 0.5(1 - s_e)^2$

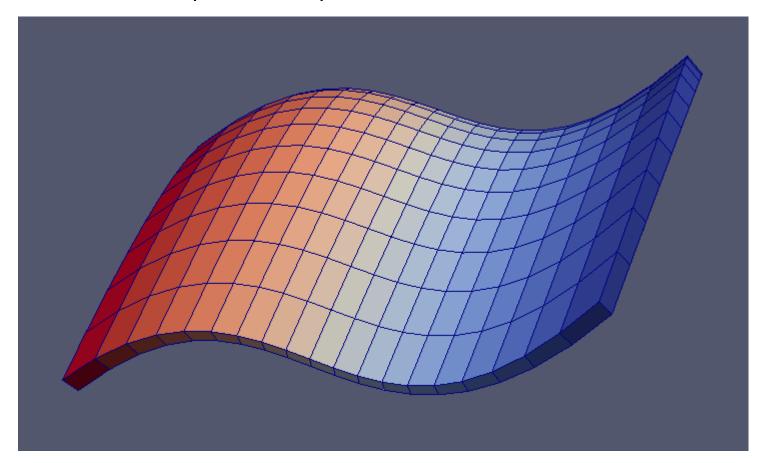

$ ho_c(s_e) = ho_d s_e^{-rac{1}{\lambda}}$				
Media type	p_d	λ		
type 1	135	2.49		
type 2	37.7	3.86		

$$s_e = \frac{s - s_{rw}}{1 - s_{rw} - s_{rn}}$$

$$s_{rw} = 0.2 \quad s_{rn} = 0.05$$

Water Saturation without capillarity

Water Saturation with capillarity



Using NURBS to represent nonplanar interfaces

Example of using a Non-Uniform Rational B-Splines (NURBS) to represent nonplanar faults and fractures

References

- 1. M. Wheeler, G. Xue, and I. Yotov, Benchmark 3D: A multipoint flux mixed finite element method on general hexahedra, Proceedings of Finite Volumes for Complex Applications VI Problems & Perspectives, Springer Proceedings in Mathematics, Vol. 4, 2011.
- 2. M. F. Wheeler, G. Xue, and I. Yotov, A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids, Procedia Computer Science, Vol. 4, 2011, 918-927.
- 3. M. F. Wheeler, G. Xue, and I. Yotov, Local Velocity Postprocessing for Multipoint Flux Methods on General Hexahedra, ICES REPORT 11-04, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, March 2011, Accepted by International Journal of Numerical Analysis and Modeling.
- 4. M. F. Wheeler, G. Xue, and I. Yotov, Accurate Cell-Centered Discretizations for Modeling Multiphase Flow in Porous Media on General Hexahedral and Simplicial Grids, SPE-141534-PP, SPE Reservoir Simulation Symposium, Woodlands, TX, February 2011, submitted to the SPE Journal.
- 5. M. F. Wheeler, G. Xue, and I. Yotov, A Multipoint Flux Mixed Finite Element Method on Distorted Quadrilaterals and Hexahedra, ICES REPORT 10-34, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, August 2010, Accepted for Publication in Numerische Mathematik.
- 6. M. F. Wheeler, G. Xue, and I. Yotov, A Multiscale Mortar Multipoint Flux Mixed Finite Element Method, ICES REPORT 10-33, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, August 2010, Accepted for Publication in Mathematical Modeling and Numerical Analysis.
- 7. M. F. Wheeler and G. Xue, Accurate Locally Conservative Discretizations for Modeling Multiphase Flow in Porous Media on General Hexahedra Grids, Proceedings of the 12th European Conference on the Mathematics of Oil Recovery ECMOR XII, publisher EAGE, 2011.
- 8. M. F. Wheeler, T. Wildey, and G. Xue, Efficient Algorithms for Multiscale Modeling in Porous Media, Numerical Linear Algebra with Applications, Vol. 17, 2010, 771-785.
- 9. A. Mikelic, B. Wang, and M. F. Wheeler, Numerical convergence study of iterative coupling for coupled flow and geomechanics, Proceedings of the 13th European Conference on the Mathematics of Oil Recovery ECMOR XIII, publisher EAGE, 2012.
- 10. A. Mikelic, M. F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Computational Geosciences, DOI 10.1007/s10596-012-9318-y.

