Controlling CO₂ movement with nanoparticles

Scientific Achievement

Shown experimentally that the mobility of CO₂ analog fluid is reduced when it displaces a brine laden with suitably treated nanoparticles.

Significance and Impact

 CO_2 is a low viscosity, high mobility fluid that moves through preferential paths through the subsurface. Our discovery raises the possibility of reducing the mobility of the CO_2 only where needed, i.e. at incipient preferential paths. This can reduce the risk of leakage and increase the efficiency of CO_2 storage. Research Details

- CO₂ and CO₂ analog fluids injected into sandstone cores with/without nanoparticles in the initial brine
- Measured patterns and saturations using CT scanning
- Preferential flow paths greatly reduced (see images)
- Low mobility phase likely the result of displacement processes creating micron droplets of CO₂ that are stabilized by the in-situ nanoparticles

Preferential paths of CO₂ analog (depicted in blue) observed in CT cross-sections without nanoparticles

Elimination of preferential paths in the presence of

nanoparticles D. A. DiCarlo, B. Aminzadeh, M. Roberts, D.H. Chung, S.L. Bryant, and C. Huh, "Mobility control through spontaneous formation of nanoparticle stabilized emulsions," Geophysical Research Letters, 38, L24404, 5 PP. doi:10.1029/2011GL050147 (2011).

